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We consider the direct numerical simulation (DNS) of a homogeneously turbulent
flow in combination with a premixed flame. The combustion takes place in the
flamelet regime which means that combustion occurs in a very thin layer, called the
flame front. The position of the flame front is modelled by means of the G-equation,
in which the flame front is represented by an isosurface G0 of a scalar field G(x, t).
The flow is described by the Navier–Stokes equations in the low-Mach-number limit,
which allows for the inclusion of gas expansion due to the temperature increase
by the combustion. The advantage of the low-Mach-number approximation is that
efficient numerical methods, used for incompressible flows, can be applied to solve
the discretized equations.

The calculations are carried out in a box with homogeneous isotropic turbulence.
In addition, a uniform mean velocity is imposed with a inflow boundary condition
at x = 0. The inflow velocity is adjusted such that the mean position of the flame is
stabilized at a fixed position. This allows us to use time averaging to obtain accurate
statistics, which are very difficult to obtain when the flame is allowed to propagate.
In the y- and z-direction, periodic boundary conditions are applied.

The numerical code has been checked with a well-known theoretical result, the
so-called Darrieus–Landau instability of a thin flame front. The results show a good
agreement between the computed growth rate and the theoretical value when the
thickness of the flame front is much smaller than the wavelength of the disturbance.
When this condition is not met, the growth rate becomes lower than the theory in
agreement with the restriction under which the theory is valid.

For the computations in homogeneous turbulence, the results show an increase
in the turbulent flame speed with increasing turbulent intensity at the position of
the flame front. This is in good agreement with experimental data and theory.
The turbulent flame speed shows also an increase as a function of the heat release
parameter. This is because disturbances on the flame front, induced by the turbulence,
are enhanced by the Darrieus–Landau instability.

The budgets of the turbulent kinetic energy and the enstrophy show that the
expansion of the gas across the flame front suppresses the turbulence. At higher
expansion rates, turbulence in the direction of the mean velocity increases and as a
result turbulence becomes strongly anisotropic. The increase is due to two processes.
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The first is the influence of the Darrieus–Landau instability already mentioned. The
second is the baroclinic production of vorticity owing to the flame front density and
pressure gradients not being aligned.

1. Introduction
Premixed combustion occurs when fuel and oxidizer are already fully mixed before

ignition. When such a mixture is ignited, the combustion takes place in a flame front
which propagates through the mixture. When the chemical time scale is very short
with respect to the diffusion time, this flame front will be very thin.

In this study, we shall limit ourselves to combustion by deflagration for which the
mechanism of flame-front propagation is as follows. The thermal energy, which is
released during combustion, will heat up the unburnt gas in front of the flame by
means of diffusion. As soon as the ignition temperature is reached, this unburnt gas
will start to burn. So the flame propagates by diffusion through the unburnt mixture.
The speed of such a deflagration flame in a laminar flow is rather modest, i.e. of the
order of several metres per second.

In the case of deflagration in a turbulent flow, the situation is more complicated.
Since the fuel and oxidizer are already fully mixed, turbulence is not relevant in
this case for mixing, but turbulence will interact with the flame front during its
propagation through the medium. This has three effects on the flame propagation.

The first effect (Damköhler 1940) is that turbulent fluctuations will distort the flame
front, giving a larger flame surface. The result is an increased combustion rate and an
increase of the mean flame speed. This effect has been confirmed by experiments. For
instance, it is known that in the case of gas explosions, the combustion rate increases
strongly in the turbulent wake behind obstacles (e.g. Ibrahim, Hargrave & Williams
2001).

The second effect is related to flame-front instabilities. Williams (1985b) gives an
overview of all instabilities that can occur in combustion. For our application, only
hydrodynamic instabilities and diffusive instabilities are relevant. An example of the
former is the Darrieus–Landau instability. Landau (1944) showed that thin planar
deflagration flames are unconditionally unstable, as a result of the density gradient
in combination with the acceleration of the flow. Diffusive instabilities occur when
the reactants have different diffusivities. This type of instability is observed mainly in
oxygen–hydrogen flames. Turbulence in the flow field can trigger these instabilities,
i.e. small disturbances in the flame front, induced by the turbulence may grow further
owing to these instabilities. This causes the area of the flame front to increase strongly.
We refer to Markstion (1964), Williams (1985b) and Zoldovich et al. (1985) for further
discussion on instabilities.

The third effect of flame-front/turbulence interaction is the production of vorticity
at the position of the flame front. This is due to the non-alignment of the pressure and
the density gradient and is called baroclinic vorticity production. This non-alignment
occurs when the flame front is distorted from its planar shape by either turbulence or
instability processes. This effect has been studied by Rutland & Ferziger (1991), who
carried out a two-dimensional simulation. Mueller et al. (1998) performed particle
image velocimetry (PIV) measurements of the interaction between a vortex pair and
a premixed flame, which provided the first quantitative experimental results of the
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generation of vorticity in premixed combustion. Louch & Bray (1998) have performed
two-dimensional simulations of Mueller’s experiments.

Our aim is to investigate the effects mentioned above. For this we will make use of
direct numerical simulation (DNS) of the flow field.

To reach our goal, the DNS should be able to reproduce the three aforementioned
effects, i.e. distortion of the flame front, flame front instability and baroclinic vorticity
production. The simulation of the first effect, distortion of the flame front, is straight-
forward, since in a DNS all turbulent length scales are resolved so that the deformation
of the flame front can be computed directly. Instability of the flame front and
baroclinic vorticity production are a result of gas expansion at the position of the
flame front so that compressibility effects should be taken into account in our simula-
tion. To accomplish this we consider the compressible Navier–Stokes equations in the
low-Mach-number limit (Najm, Wyckoff & Knio 1998). The advantage of this limit is
that it allows us to use the efficient numerical methods, developed for incompressible
flows. In previous studies, gas expansion has not been included or it has been
included in such a way that it does not allow for baroclinic vorticity production. To
our knowledge the study presented here is one of the first DNSs of a turbulent flow
with premixed combustion which uses the level set approach and which includes all
the aforementioned effects (e.g. in the review of Poinsot, Candel & Trouvé (1996),
no comparable simulations are mentioned). A comparison of the results obtained
from our simulation with the results of other computations will thus allow for an
investigation of the additional effects due to compressibility of the gas.

Since we consider premixed combustion in the flamelet regime, the actual combus-
tion takes place in a very thin layer, the so-called flame front. A resolution of this
flame front on the numerical grid, on which the flow is to be computed, would lead to
inaccessible requirements in terms of computational power. Therefore we have chosen
to model the flame front by means of a so-called level set approach (Sethian 1999).
In this approach, the position of the flame front is represented by an isosurface G0 of
a scalar field G(x, t). The scalar field propagates with respect to the flow field with a
flame velocity sf . With the value of this flame velocity, all the internal structures of the
flame region, which we cannot resolve on our numerical grid, are taken into account.
The result is an equation which describes the evolution of the scalar field G in time,
the so-called G-equation, (Williams 1985a). The expansion of the gas is included by
imposing a certain temperature and density profile at the position of the propagating
flame. The size of the temperature jump over the flame front is determined by the
properties of the chemical reaction and has to be known in advance. The same is true
for the flame speed sf , which is also assumed to be a known parameter.

The G-equation has been used previously in LES and DNS simulations. Im, Lund &
Ferziger (1995) and Piana, Veynante & Candel (1996) studied the application of the
G-equation in turbulent flow simulations to develop an LES-model (Im et al. 1997).
Wenzel & Peters (1998) did apply the G-equation in a DNS, but did not include
the effect of gas expansion in their simulation. Much effort has been made to find
a way to modify the G-equation itself to account for the effects of gas expansion
so that one can continue to calculate with an incompressible flow. Ashurst (1997)
has introduced a potential flow field which represents gas expansion as a source
of volume. This potential flow field, however, lacks physical properties such as the
generation of vorticity at the flame front. Nevertheless, Ashurst (1997) was able to
reproduce the Darrieus–Landau instability. Peters, Wenzel & Williams (2000) modified
the G-equation in the Reynolds-averaged Navier–Stokes (RANS) equations to take a
potential field into account. Wenzel & Peters (2000) used a modified G-equation in a
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DNS model and concluded that the effects of gas expansion are only significant for
small turbulence intensities.

Another model to compare with is presented by Zhang & Rutland (1995). They
modelled the chemical process with a single step reaction with a global reaction rate.
This approach is, however, limited to low Reynolds numbers and relatively thick
flames.

Our simulation is performed in a box geometry with two homogeneous directions.
In the third direction, a realization of a stationary, homogeneous isotropic turbulent
simulation is used as an inflow boundary condition with an uniform inflow velocity
Uin. In this geometry, regions of shear in the mean flow field, which usually occur
in the vicinity of walls, are avoided. The disadvantage of such mean shear is that it
influences the geometry of the flame front, which we want to avoid here since we
are focusing on the influence of turbulence on the flame front. The turbulence decays
while being transported downstream in through the box. The mean position of the
flame front is stabilized at a fixed position by adjusting the inflow velocity Uin. Such
a stable position of the flame front gives us the ability to obtain accurate statistics by
averaging in time together with averaging in the two homogeneous directions. Such
time averaging is very difficult to achieve in experiments where the flame front usually
moves.

In § 2, we discuss the theoretical background of enhancement of premixed com-
bustion by turbulence. In § 3, the set of equations used in our simulations is presented
and in § 4, their numerical solution. The results of the simulations are discussed in § 5.

2. Theory
We have argued that the propagation of the flame front by deflagration in premixed

combustion is due to the diffusion of heat. Therefore, it follows that the speed of the
flame front should depend on the diffusion coefficient of the gas and the combustion
rate so that the speed of a laminar flame sf l can be expressed as (Williams 1985b):

sf l ≈ 1

ρu

√
λq

cp

, (2.1)

where ρu is the density of the unburnt gas, λ the thermal conductivity, cp the specific
heat of the gas mixture and q the chemical reaction rate or the amount of mass that
is burnt per unit volume and time.

Let us now look in more detail at the structure of the flame (figure 1). We have
already mentioned that the gas in front of the reaction region is heated by the
diffusion until the ignition temperature, is reached. At the same time, the density will
decrease and, as a consequence of continuity, the gas will expand so that the velocity
will increase. When the gas reaches the ignition temperature, the gas will start to
burn, as indicated in figure 1 by the chemical source term.

The flame with a total thickness �f consists of the preheat zone and the reaction
zone. In the latter zone, the actual reaction takes place and its thickness, �δ , is of the
order of 10% of the total flame thickness �f or

δ =
�δ

�f

≈ 0.1. (2.2)

When a flame front propagates through a turbulent flow field, its behaviour can be
characterized by the ratio of the time scales of the turbulence and chemical processes



Direct numerical simulation of homogeneous turbulence 29

ld
lf

Density

Flame speed

Temperature

Burnt gas

Chemical source

Velocity

Preheat zone Reaction zone

Unburnt gas

Figure 1. The structure of a stationary flame front in premixed combustion. (Note that in a
frame fixed to the flame front, the product of density times velocity should be constant across
the flame front.)

known as the Karlovitz number. Its definition is the ratio between the chemical time
scale τf = �f /sf l and the Kolmogorov time scale τη:

Ka =
τf

τη

=
�2

f

η2
, (2.3)

where η is the Kolmogorov length scale.
For an extensive review on the various combustion regimes and their characteristics

as a function of Ka we refer to literature (e.g. Peters 2000). Here, we shall limit
ourselves to the case Ka < 1, known as the flamelet regime. In this regime, the inner
structure of the flame will not be changed by the turbulent eddies, but the flame front
will be deformed. The effects of the turbulence on the flame front are in this case
purely kinematic and therefore ideal for modelling with the G-equation (Peters 2000).

2.1. Turbulent distortion of the flame front

Although for the flow regime that we have selected, turbulence is not able to influence
the inner structure of the flame, turbulent eddies are able to deform the flame as a
whole. Therefore, the flame front will become corrugated and wrinkled, which we
denote as a kinematic interaction. The effect of this distortion is an increase in the
total flame front area and therefore in the total combustion rate. Let us define a mean
turbulent flame speed sf t by

sf t = sf l

At

Al

, (2.4)

where At is the total area of the turbulent flame front and Al the area of the flame
front projected onto a flat surface, which would be the geometry of the flame in
laminar flow conditions. Damköhler (1940) related the increase in flame area to the
root mean square of the turbulent velocity fluctuations u′ as follows:

At

Al

=
sf l + C u′

sf l

, (2.5)

where C is a coefficient with a value of order unity. Combined with (2.4), this gives:

sf t = sf l + Cu′, (2.6)
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Figure 2. Schematic illustration of the process of flame front restoration. The flame
propagates from the right to the left, while the unburnt gas is at rest.

which suggests that the turbulent flame speed in the flamelet regime is linearly
proportional to the turbulent velocity fluctuations.

The flame front propagates in the direction, normal to its surface and as a result it
deforms the disturbances on the flame front into cusps, as shown in figure 2. These
cusps move at a higher speed than the flame-front velocity. Therefore the amplitude
of the disturbances are reduced and the flame front returns to its flat shape. This
restoration of the flame front is called the Huygens effect in flame propagation,
analogue to a similar effect which occurs in nonlinear optics.

2.2. Flame front instabilities

Next we turn to the so-called hydrodynamic instability, first considered by Landau
(1944). The flame front is represented as a plane of discontinuity in the density. On
this flame front a small-wavelike disturbance is superposed, given by

ζ = D ei(ky−ωt), (2.7)

where k is the real wavenumber and ω the complex frequency. By linear stability
theory, the following expression for the imaginary part of ω, i.e. the growth rate of
the amplitude of the disturbance, can be computed (Landau & Lifshitz 2000, p. 488):

Ω = kuu

τ + 1

τ + 2

(√
2 + τ − 1

τ + 1
− 1

)
, (2.8)

where uu is the velocity of the unburnt gas and τ the ratio (ρu − ρb)/ρb. When τ > 0,
which is the case for a flame, Ω > 0. This means that for all k, the disturbance on
the flame front grows or the flame front is unconditionally unstable. This type of
instability is usually denoted as the Darrieus–Landau instability.

For a further discussion on the background and mechanism of this instability see,
e.g. Williams (1985b).

3. The equations governing the premixed combustion process
3.1. The G-equation

As mentioned before, the flame is modelled as an isosurface G0 of a scalar field
G(x, t) with G0(x, t) indicating the position of the flame. The evolution of the scalar



Direct numerical simulation of homogeneous turbulence 31

field G is given by the equation:

∂G

∂t
+ uj

∂G

∂xj

= sf

∣∣∣∣∂G

∂xi

∣∣∣∣ , (3.1)

(Williams 1985b) which is known as the G-equation. The flame speed sf is the laminar
flame speed with respect to the unburnt gas of a flat flame in a laminar flow sf l ,
corrected for the effects of curvature and strain. It reads

sf = sf l − sf lLκ − LS. (3.2)

These corrections are valid only for low curvature and low strain limits. In (3.2)
several parameters appear, which require an additional definition. The first is L, the
Markstein length. The second is the curvature κ , defined by

κ = ∇ · n, (3.3)

where the unit normal vector n can be written in terms of the G-field as

n = − ∇G

|∇G|

∣∣∣∣
G=G0

. (3.4)

Finally, S is the strain rate imposed on the flame and it is given by

S = −n · ∇u · n. (3.5)

The term with the curvature κ acts as a diffusion term in the G-equation with a
diffusion coefficient DL given by

DL = sf lL. (3.6)

The DL is called the Markstein diffusivity. According to Peters (2000), the Markstein
length L and therefore DL is positive for most practical applications of premixed
hydrocarbon combustion and has a value of the order of the laminar flame thickness
�f . For positive values of L, the contribution of the curvature will suppress instabilit-
ies in the flame front. For negative values of L and DL, which occur in hydrogen–air
mixtures, the instabilities will grow, leading to strong flame accelerations. In our
computations, however, we have neglected all corrections on sf l by taking L = 0.

The flame speed must also be corrected for the effect of gas expansion. This cor-
rection can be written as (Piana et al. 1996)

sf = sf l

ρu

ρ
, (3.7)

so that the complete expression for sf becomes:

sf =
ρu

ρ
(sf l − sf lLκ − LS). (3.8)

This speed should be interpreted as the flame displacement speed. The heat release
and the thermal expansion are, in principle, controlled by the flame consumption
speed and these two velocities might be quite different (Poinsot Veynante & Candel
1991; Piana et al. 1996; Poinsot & Veynante 2001).

Besides the fact that the position of the flame front is represented by G(x, t) =G0,
the G(x, t) has no physical meaning. In order to simplify the coupling between G and
the temperature field, to be described in the next section, we impose the additional
condition that |∇G| = 1. This means that the value of G(x, t) can be interpreted as
the distance from x to the flame front.
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3.2. The flow equations

The flow is described by the compressible Navier–Stokes equations which read

∂ρ

∂t
+

∂mi

∂xi

= 0 (3.9)

and
∂mi

∂t
+

∂miuj

∂xj

= − ∂p

∂xi

+
∂τij

∂xj

, (3.10)

where ui is the velocity, ρ is the density and mi ≡ ρui the mass flux. The term p

is the pressure and τij the deviatoric stress tensor. All variables have been made
dimensionless with the laminar flame speed sf l as velocity scale and the height of
our computational domain L (which is equal to the width) as length scale. For the
density and viscosity scale we take the values of the unburnt gas, i.e. ρu and µu. The
Reynolds number Re is then defined as:

Re =
ρusf lL

µu

. (3.11)

The stress tensor can be written as

τij =
1

Re
µ

(
∂ui

∂xj

+
∂uj

∂xi

− 2
3
δij∆

)
. (3.12)

The term ∆ is the relative change in volume, given by

∆ ≡ ∂ui

∂xi

= − 1

ρ

Dρ

Dt
, (3.13)

where the expression on the far right-hand side follows from conservation of mass.
The dynamic viscosity µ is scaled with the unburnt gas µu. In principle, the viscosity

may depend on the temperature so that the viscosity may vary as a function of time
and space. However, we assume here that the viscosity remains equal to the viscosity
of the unburnt gas everywhere so that µ = 1. The stress gradient in (3.10) can now be
written as

∂τij

∂xj

=
1

Re

(
∂2ui

∂x2
j

+
1

3

∂∆

∂xi

)
, (3.14)

In the low-Mach-number approximation (Najm et al. 1998), the pressure depen-
dence of the density is neglected, resulting in the equation of state ρ = ρ(T ). Here we
take for the medium an ideal gas and this leads to

ρ =
1

T
, (3.15)

where we have scaled the temperature T with the temperature of the unburnt mixture
Tu. With this form for the equation of state, all acoustic wave modes are eliminated
from the system of equations, and efficient numerical methods, used in incompressible
flows, can be applied.

Since G is defined to be a distance function, the temperature of the gas can be
derived directly from the G-field with

T = Tu

(
1 +

tanh((G0 − G))/δ + 1

2
τ

)
, (3.16)
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where τ is the heat release parameter defined in terms of the temperature or density
of the unburnt mixture and the temperature Tb or density ρb of the burnt mixture as

τ =
Tb − Tu

Tu

=
ρu − ρb

ρb

. (3.17)

The δ in (3.16) should be interpreted as an ‘artificial’ thickness of the flame, which is
required for numerical purposes. To resolve the flame in our computations δ is chosen
such that the flame is about 4 grids cells wide. Because of computational limitations,
the numerical flame thickness must be chosen to be larger than the flame thickness
of a real flame. This artificial thickening of the flame will have some influence on
the the local flame structure and topology. On the other hand, it will not have much
influence on the global statistics and budgets of turbulence, because these quantities
depend mainly on the large flow scales and on global conservation properties.

The G-equation (3.1), conservation of mass (3.9) and the momentum equation (3.10),
combined with the equation of state (3.15) and the equation for the temperature (3.16)
form a closed system which we will solve numerically.

3.3. Turbulent kinetic energy

In our analysis we shall consider the kinetic energy of the flow per unit volume
which is defined as k = ρu2

i /2. An equation for k can be obtained by multiplying the
momentum equation (3.10) with ui , which leads to

∂k

∂t
+

∂ujk

∂xj

= −ui

∂p

∂xi

+ ui

∂τij

∂xj

. (3.18)

In our case of a turbulent flow we will compute various flow statistics with the help
of a Reynolds decomposition where each variable is written as the sum of a mean value
and a fluctuation, i.e. u = u + u′. Here the overbar indicates an ensemble average and
the prime indicates the fluctuation around this average. When we apply this procedure
to the definition of the kinetic energy, we obtain the following expression for the mean
kinetic energy k,

k = 1
2
ρ ui

2 + ρ ′u′
i ui + 1

2
ρ u′

i
2 + 1

2
ρ ′u′

i
2 (3.19)

which, because we have taken into account density fluctuations, becomes more
complicated than the expression for k in incompressible flows. We must now make a
distinction between the contribution to the kinetic energy by the mean flow and by
the turbulence. We define the Galilean invariant part of (3.19) as the turbulent kinetic
energy kt and the non-Galilean part of (3.19) as the mean flow kinetic energy km, so
that k = km + kt . Both km and kt can be divided into a mean and a fluctuating part
which are given by:

km = 1
2
ρ ui

2 + ρ ′u′
i ui, (3.20)

k′
m = 1

2
ρ ′ui

2 + ρ uiu
′
i + ρ ′u′

iui − ρ ′u′
iui, (3.21)

and

kt = 1
2
ρ u′

i
2 + 1

2
ρ ′u′

i
2
, (3.22)

k′
t = 1

2
ρu′

i

2 − 1
2
ρ u′

i
2 + 1

2
ρ ′u′

i

2 − 1
2
ρ ′u′

i
2
, (3.23)
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An equation for km can be derived by applying a Reynolds decomposition to the
momentum equation (3.10) and multiplying the mean part with ui . This results in:

∂km

∂t
+

∂ujkm

∂xj

= −
∂u′

j k
′
m

∂xj

− ui

∂p

∂xi

+ ui

∂τ ij

∂xj

+ ρ ′u′
i

∂ui

∂t

+ ρ u′
iu

′
j

∂ui

∂xj

+ ρ ′u′
i uj

∂ui

∂xj

+ ρ ′u′
iu

′
j

∂ui

∂xj

. (3.24)

An equation for kt can be found by taking the fluctuating part of the momentum
equation, multiplying this with u′

i and averaging the result. This gives:

∂kt

∂t
+

∂ujkt

∂xj

= −
∂u′

j k
′
t

∂xj

− u′
i

∂p′

∂xi

+ u′
i

∂τ ′
ij

∂xj

−
(

ρ ′u′
i

∂ui

∂t
+ ρ u′

iu
′
j

∂ui

∂xj

+ ρ ′u′
i uj

∂ui

∂xj

+ ρ ′u′
iu

′
j

∂ui

∂xj

)
. (3.25)

Substitution of the expression for the deviatoric stress (3.14) gives

u′
i

∂τ ′
ij

∂xj

=
1

Re

(
∂2 1

2
u′

i
2

∂x2
j

−
(

∂u′
i

∂xj

)2

+
∂ 1

3
u′

i∆
′

∂xi

− 1
3
∆′2

)
. (3.26)

This, together with the assumption that the problem is stationary, gives the following
equation for the turbulent kinetic energy budget:

Dkt

Dt
≡ uj

∂kt

∂xj

= Ek + Tk + Pk + Πk + Dk + εk = 0, (3.27)

with

Ek = −kt

∂ui

∂xi

,

Tk = −
∂u′

j k
′
t

∂xj

,

Pk = −
(

ρ u′
iu

′
j

∂ui

∂xj

+ ρ ′u′
i uj

∂ui

∂xj

+ ρ ′u′
iu

′
j

∂ui

∂xj

)
,

Πk = −∂p′u′
i

∂xi

+ p′ ∂u′
i

∂xi

,

Dk =
1

Re

(
∂2 1

2
u′

i
2

∂x2
j

+
∂ 1

3
u′

i∆
′

∂xi

)
,

εk = − 1

Re

((
∂u′

i

∂xj

)2

+ 1
3
∆′2

)
.

Some of the terms in (3.27) have a similar interpretation as in the incompressible
case. These are the production term Pk , the turbulent transport term Tk , the viscous
and pressure transport Dk and the viscous dissipation εk . However, all these terms are
more complicated than in the incompressible case, because of the inclusion of density
fluctuations. This is in particular apparent in the production term, which contains
now three terms instead of one term. However, the interpretation of the production
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term as the interaction between the mean flow and the turbulence remains, because
this term also appears in the equation for km with an opposite sign.

There appear also new terms in (3.27) which are not found in the equation for the
incompressible turbulent kinetic energy. The first is Ek , which can be interpreted as
the effect of volume expansion on the turbulent kinetic energy. In our case where the
gas expands, i.e. ∂ui/∂xi > 0, this term results in a decrease of the kinetic energy. A
simple explanation is that in the case of gas expansion, the volume increase results
in a decrease of the energy density. The pressure term Πk consists of a contribution
of the pressure diffusion, which also occurs in the incompressible energy budget,
and a new contribution, which is called the pressure dilation. The pressure dilation
describes the contribution to the kinetic energy as a result of the expansion work by
the pressure field.

3.4. Vorticity

In our further analysis we will also consider the vorticity, in particular in connection
with vorticity production by baroclinic terms. By applying the rotational operator to
(3.10) we obtain the following equation for the vorticity:

∂ω

∂t
+ u · ∇ω = (ω · ∇)u − ω(∇ · u) −

(
∇ 1

ρ
× ∇p

)
+

1

Re

1

ρ
∇2ω +

(
∇ 1

ρ

)
× (∇ · τ ). (3.28)

Let us first consider the terms in this equation which also appear in the vorticity
equation for an incompressible flow (Batchelor 1967, § 5.2). Apart from the terms
on the left-hand side of the equation, the first term on the right-hand side (ω · ∇)u,
describes the effect of deformation of the velocity field on the vorticity. One of the
consequences of this term is that it causes a vortex to spin up, when it is stretched in
the direction of its vorticity vector. The second term is ∇2ω and it accounts for the
viscous destruction of vorticity.

Next we consider the terms which do not have an equivalent term in the incom-
pressible vorticity equation. This is the term −ω(∇ · u), which describes the effect of
gas expansion. When the gas expands ω will decrease since it is smeared out over a
larger volume. The term −∇(1/ρ) × ∇p is called the baroclinic production term and it
describes the production of vorticity when the pressure and density gradient are not
aligned. For the same pressure gradient, the part of the flow with a low density will be
accelerated faster than the part with the higher density, resulting in the production of
vorticity. The last term, which is written as ∇(1/ρ) × (∇ · τ ), is similar to the baroclinic
term in the way that it accounts for the production of vorticity when the density
gradient and the divergence of the stress are not aligned.

In our analysis we will be primarily interested in the vorticity fluctuations. A
measure of these fluctuations is the enstrophy Ω , which is defined as

Ω = 1
2
|ω′|2, (3.29)

where ω′ is the vorticity fluctuation around the average vorticity ω. An expression
for Ω can be found by a similar procedure as used to obtain the equation for the
turbulent kinetic energy. It is convenient to write the resulting equation with the help
of the specific volume v = 1/ρ and the quantity Ω ′, defined as

Ω ′ ≡ 1
2
|ω′|2 = 1

2
ω′ · ω′. (3.30)

The resulting equation for the enstrophy then becomes:

∂Ω

∂t
+ u · ∇Ω = Eω + Tω + Πω + Dω + Sω + εω (3.31)
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with

Eω = −Ω(∇ · u),

Tω = −∇ · (u′Ω ′),

Πω = −ω′ · (∇v′ × ∇p′) + ω′ · (∇v′ × ∇ · τ ′),

Dω =
1

Re
v ∇2Ω +

1

Re
v′∇2Ω ′,

Sω = ω′ · (ω′ · ∇u) + ω′ · (ω′ · ∇u′),

εω = − 1

Re
v ‖∇ω′‖2 +

1

Re
v′‖∇ω′‖2.

The Eω denotes the effect of the expansion on the enstrophy. This term has the same
effect as the equivalent term in the equation of kinetic energy and will lower the en-
strophy density, due to the increase in volume in an expanding flow. The Tω is the
turbulent transport term and Πω is the production of enstrophy, as the result of the
normal and deviatoric stresses acting on a fluid with a density gradient. The first of
these terms is the baroclinic production of enstrophy. The Dω is the viscous transport
term, Pω is the production of enstrophy by the deformation of the velocity field and
εω is the viscous destruction of enstrophy.

3.5. Favre averaging

The complication that we have encountered in § § 3.3 and 3.4 because of the appearance
of density fluctuations, is usually avoided by introducing a so-called Favre averaging
(Lele 1994), defined as

ũi =
ρui

ρ
. (3.32)

When we, for instance, substitute this definition into (3.10) we obtain the following
equation for the Favre mean velocity

∂ρũi

∂t
+

∂ρũi ũj

∂xj

= − ∂p

∂xi

+
∂τ ij

∂xj

−
∂ρũ′′

i u
′′
j

∂xj

, (3.33)

where the velocity fluctuation u′′
i is defined by u′′

i = ui − ũi .
The advantage of this description is that the equation (3.33) has the same form as

the equation for the mean velocity for an incompressible flow. This is also the case
for the Favre-averaged kinetic energy, which is defined as

k̃ = k̃m + k̃t = 1
2
ρũ2

i + 1
2
ρũ′′

i
2
. (3.34)

The k̃t can be expressed in terms of the variables that we use here:

k̃t =
1

2

(
ρ u′

i
2 + ρ ′u′

i
2 − ρ ′u′

i

2

ρ

)
= kt − 1

2

ρ ′u′
i

2

ρ
. (3.35)

We see thus that the Favre-averaged turbulent kinetic energy will always be smaller
than the ensemble mean turbulent kinetic energy given by (3.22). We shall return to
this result in our analysis of the simulation data.

4. Numerical method
To compute the problem described by the equations (3.1), (3.9) and (3.10), we use a

second-order predictor-corrector projection scheme (Najm et al. 1998) on a staggered
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grid. In this scheme, the evolution of the velocity and G-equation are coupled in
order to stabilize the computation which in our case concerns a flow with large
density variations. The spatial derivatives in equations (3.9) and (3.10) are obtained
with a finite-volume method on a staggered grid, resulting in a second-order accurate
discretization. The disadvantage of the low-order numerical methods, such as the
one used here, is that they are always affected by some numerical dissipation (or
numerical viscosity). Their advantage, however, is that these methods have certain
nice properties, such as conservation of kinetic energy, which most high-order methods
do not have.

The spatial derivatives in equation (3.1) are also obtained with a finite-volume
method on a staggered grid. The advective fluxes on the cell faces of the control
volumes are obtained with the help of a TVD-scheme with a Van Leer flux limiter.

4.1. Predictor

The predicted values at the new time are denoted with an asterisk.
First, we integrate the G-equation (3.1), in time using a second-order Adams–

Bashforth scheme to obtain a prediction of G according to

G∗ − Gn

�t
=

3

2

∂G

∂t

∣∣∣∣n − 1

2

∂G

∂t

∣∣∣∣n−1

, (4.1)

where ∂G/∂t |n is discretized on the spatial grid using a finite-volume method. After
this step, G is reinitialized with the procedure of Sussman, Smereka & Osher (1994),
in order to satisfy the condition that |∇G| = 1 everywhere. From the value of G∗, we
obtain the temperature by means of (3.16) and from the temperature we calculate the
density ρ∗ with the help of (3.15).

The flow field is now solved by means of a pressure–correction method. We integrate
the momentum equations (3.10), again with a second-order Adams–Bashforth scheme,

m′ − mn

�t
=

3

2

∂m
∂t

∣∣∣∣n − 1

2

∂m
∂t

∣∣∣∣n−1

, (4.2)

where m′ is called the intermediate mass flux. The time derivatives on the right-hand
side of (4.2) are defined as

∂m
∂t

∣∣∣∣n = −∇ · (mnun + τ n), (4.3)

where spatial derivatives are discretized with help of a second-order central scheme.
Conservation of mass is enforced by introducing the pressure in

m∗ − mn

�t
+ ∇ · (mnun) = −∇p∗ + ∇ · τ n, (4.4)

with m∗ again the predicted mass flux. Subtracting both expressions (4.2) and (4.4),
gives

m∗ − m′

�t
= −∇p∗, (4.5)

Application of conservation of mass (3.9) gives

∇2p∗�t = ∇ · m′ − ∂ρ

∂t

∣∣∣∣∗

, (4.6)
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which has the form of a Poisson equation for the pressure. The term ∂ρ/∂t |∗ cannot
be evaluated directly and is obtained from the following second-order discretization:

∂ρ

∂t

∣∣∣∣∗

=
1

2�t
(3ρ∗ − 4ρn + ρn−1). (4.7)

The equation (4.6) is solved with a direct solver using Fourier transforms in the
periodic y- and z-directions. For the x-direction, a tridiagonal system remains, which
can be solved directly. With the pressure determined, we correct the intermediate
mass flux with the help of (4.5) which gives us a prediction of the mass flux m∗ on
the new time. The velocity is computed from this mass flux and the predicted density.

The method described above is the standard projection method, as applied in the
case of incompressible flows. It is known to be stable for temperature and density
ratios up to 2 so that in those cases the values of G∗, m∗, u∗ and ρ∗ can be taken
equal to the values Gn+1, mn+1, un+1 and ρn+1 at the next time step. For higher density
ratios, a corrector step is required to stabilize the scheme.

4.2. Corrector

The predicted values, denoted with an asterisk, are now corrected to obtain the final
value at the new time. The temporal derivative of G on the new time level n+ 1 is
estimated with the help of the predicted values indicated with an asterik, with the
help of a quasi-implicit Crank Nicolson scheme:

Gn+1 − Gn

�t
=

1

2

(
∂G

∂t

∣∣∣∣n +
∂G

∂t

∣∣∣∣∗)
. (4.8)

After this, the reinitialization procedure is applied again to obtain |∇Gn+1| = 1
everywhere. The new density ρn+1 is again found from the equation for the temperature
(3.16) and the equation of state (3.15). The new intermediate mass flux m′′ is now
given by

m′′ − mn

�t
=

1

2

(
∂m
∂t

∣∣∣∣n +
∂m
∂t

∣∣∣∣∗ )
, (4.9)

where the estimate of the temporal derivative on the new time step is based on the
discretization of the predicted mass flux and velocity field according to

∂m
∂t

∣∣∣∣∗

= −∇ · (m∗u∗ + τ ∗). (4.10)

The pressure is then solved, using density on the new time step,

∇2pn+1�t = ∇ · m′′ − ∂ρ

∂t

∣∣∣∣n+1

, (4.11)

where

∂ρ

∂t

∣∣∣∣n+1

=
1

2�t
(3ρn+1 − 4ρn + ρn−1). (4.12)

With this pressure, the mass flux is corrected according to

mn+1 − m′′

�t
= −∇pn+1. (4.13)

At this point, all variables at the time n + 1 are known and the computation can be
continued for the next time step.
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Figure 3. Sketch of the flow geometry.

5. Computations
5.1. Computational domain

The computational geometry is a box with sides Lx , Ly and Lz, with Ly = Lz and
Lx = 4Ly . A sketch of the geometry is given in figure 3. The mean flow is from left to
right, while the flame front propagates in the opposite direction.

As inflow condition at x = 0 we have used a realization of homogeneous isotropic
turbulence in a periodic box, computed with a resolution of 1283. This isotropic
turbulence field is fed into the channel at x = 0 with a inflow velocity Uin constant
over the cross-section of the channel. Furthermore, the inflow velocity is adjusted at
every time step to compensate for the turbulent flame speed sf t so that the flame
stays at approximately the same position in the box. The adjustment procedure is
described in the following.

The position of the flame front xf is defined as

xf =

∫
V

(x − G) dV

V
, (5.1)

where V is the total flow volume. This flame position is stabilized around the desired
position x0 by adjusting the inflow velocity Uin according to

dUin

dt
= −c1(xf − x0) − c2

dxf

dt
. (5.2)

For the position of the flame front we can write

xf − x0 =

∫ t

0

[Uin(t
′) − sf (x ′)] dt ′,

where we have assumed that the flame front starts at x0 for t = 0 and that sf

depends on time through its position. After differentiating this relation twice and the
substitution of (5.2), we find that xf satisfies the equation

d2xf

dt2
= −c1(xf − x0) −

(
c2 +

d sf

dx

)
dxf

dt
.

The first term in this equation give rise to a harmonic oscillation of xf around x0

while the second term presents a damping when c2 +dsf /dx > 0. We note here that we
have argued, e.g. in (2.5), that sf will be a funtion of u′. In the flows that we consider
here, du′/dx < 0 so that also dsf /dx < 0. This means that without a sufficiently large
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positive c2 our system would be unstable. In our case we try to have a behaviour
of xf close to critically damped for which the relation c2 + dsf /dx = 2

√
c1 should

be satisfied. This means that the damping is strong enough to avoid unnecessary
oscillations around x0, but not so strong as to avoid a too quick return to equilibrium.
The constant c1 can be chosen freely and determines the stiffness of the system. In
this case, we take c1 = 10. With this value, the position of the flame is fairly stable and
varies no more than 2% around its equilibrium position, while it gives no additional
limitation of the time step.

Four types of simulations, called types I, II, III and IV, have been performed. In the
first type we consider spatially decaying incompressible turbulence. The resolution of
the type I simulation is 384 × 128 × 128 in the x-, y- and z-directions, respectively.
The grid spacing is chosen uniform in all directions, which minimizes the numerical
dissipation of the second-order scheme that we use. This simulation can be considered
as a reference for decaying turbulence when no combustion effects are present. The
inflow velocity at x = 0 in this case is fixed to Uin =1.

The second type of simulation is performed with an imposed gas expansion with
τ = 3 at a fixed position at x = 2.66. The flame is kept flat which implies that flame
distortion by turbulence and instability processes is turned off. As a result of the fixed
position of the flame front, the inflow velocity Uin need not be adjusted to stabilize
the flame front, but it remains constant with a value of Uin =1. This case is not a
realistic combustion simulation, since the flame front is not affected by the turbulence,
but remains flat; however, the turbulence is affected by the expansion of the gas. This
simulation is denoted the ‘flat flame’ in the graphs.

The third type of simulation is performed to investigate whether the code is able to
reproduce the Darrieus–Landau instability of the flame front. This can be considered
a test of our code to check whether compressibility effects have been correctly
incorporated. The simulations are performed on a two-dimensional geometry and are
carried out by using our code with a minimal number of grid points in the z-direction.
We have used a resolution of 256 × 128 × 4 on a domain of 2 × 1 × 0.03125 in the x-,
y- and z-directions. These tests are performed on a PC with a 900 MHz Athlon CPU.
Each time step takes about 3 s and a run takes 1000 time steps.

In the fourth type of simulation, we carry out the full DNS of a turbulent
flow including the interaction between the turbulence and the flame front. These
simulations use the same turbulent inflow boundary conditions, as mentioned in the
type I simulations. The simulations are performed on a grid in the domain shown in
figure 3 with a resolution of 384 × 128 × 128 on an SGI O3800 computer. The code
is parallelized and runs on 32 nodes. Each time step takes about 5 wall clock CPU s.
A run takes about 80 000 time steps.

The statistical results to be presented below are obtained by taking an ensemble
average over at least 50 realizations of the flow field. In order to eliminate the effect
of the flame-front stabilization, mentioned above, on the statistics we compute the
fluctuating quantities with respect to the mean of each realization and not, as is often
done, with respect to the total mean. This has the advantage that the fluctuations in
Uin, which result from the stabilization mechanism, and the fluctuations in the pressure
gradient, which result from the change in the bulk velocity, give no contribution to
the statistics of the velocity fluctuations and the pressure.

The realization of homogeneous isotropic turbulence, which is applied as inflow
boundary condition for the type I, II and IV simulations, is obtained from a pseudo-
spectral code used by Brethouwer (2001). This simulation, which we will call the
inflow field, has a Reynolds number of Reλ =95, where Reλ is defined in terms of the
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Heat release Reynolds Position
Heat release parameter τ Turbulence number Inflow of flame Indicated

Type included at x = 0 intensity v′ Re� velocity Uin xf with

I No 0 2.35 818 1 (fixed) τ = 0, Uin = 1
II Yes 3 2.35 818 1 (fixed) 2.66 flat flame
IV No 0 0.59 205 1.28 2.70
IV No 0 1.17 409 1.34 2.69
IV No 0 2.35 818 1.41 2.69 τ = 0
IV Yes 1 2.35 818 1.88 2.62 τ = 1
IV Yes 3 2.35 818 3.38 2.51 τ = 3
IV Yes 5 2.35 818 4.44 2.59 τ = 5

Table 1. Overview of the different types of three-dimensional simulations.

r.m.s. velocity fluctuation by

v′ =

√
u2

i

3
, (5.3)

and the Taylor microscale λ as

Reλ =
v′λ

ν
. (5.4)

In this case, λ=0.0518L and the integral length scale � = 0.174L, where L is the
length of the side of the cube, in which the simulation of the homogeneous isotropic
turbulent flow field is carried out. The Reynolds number, based on � and v′ according
to,

Re� =
v′�

ν
=

�

λ
Reλ, (5.5)

becomes Re� = 319. From these data, we can compute the viscosity of the inflow field
in order to set the correct parameters for the simulation of the combustion.

An overview of all the simulations of types I, II and IV that we have carried out, is
shown in table 1. We see that various values for the inflow Reynolds number Re� have
been used. For instance, all the simulation with v′ =2.35 have a Reynolds number
of Re� =818, which means that the viscosity in the simulation is a factor 2.56 lower
than the viscosity in the inflow field, which has a Reynolds number of Re� = 319. For
v′ = 2.35, the viscosity is adjusted in order to lower the decay rate of the turbulence,
which results in higher turbulence intensities at the position of the flame front. For
the cases v′ = 1.17 and v′ = 0.59, the velocity of the inflow field is scaled with a factor
of 0.5 and 0.25, respectively, with respect to the case v′ = 2.35, while the viscosity
is kept constant. This results in values of the Reynolds number of Re� =409 and
Re� = 205, as listed in table 1. A disadvantage of this approach is that the viscosity of
the inflow field and the channel are not equal and the flow field in the channel has to
adjust to the different viscosity. However, owing to the artificial nature of the inflow
boundary condition, the flow in the channel must adjust itself anyway, even when
the viscosity of the inflow field and the channel match exactly. The effect of this flow
adjustment can be seen in figures 14 and 19 where we show the decay of turbulent
kinetic energy and the decay of the enstrophy, respectively. For τ = 3 and τ = 5, the
decay of the turbulent kinetic energy is relatively low from x = 0 to x = 0.5, while in
the same region and for the same values of τ , the enstrophy even shows an increase.
However after x = 0.5, the flow behaves as a fully developed decaying turbulent flow
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Figure 4. The turbulent kinetic energy kt and its components as a function of x. The total
energy is fitted with kt = a(x − x0)

−n, where a =1.10, x0 = − 0.35 and n= 2.51.

and the effect of the boundary condition at x = 0 has disappeared. Therefore, the
difference in viscosity between the inflow field and the actual simulation will have no
influence at the position of the flame front, i.e. around x =2.66.

5.2. Results of type I simulations (decay of incompressible isotropic turbulence)

As a reference case we have computed the spatial decay of isotropic turbulence, which
can be considered as a test of the numerical code. In figure 4, the decay of turbulent
kinetic energy and its three components are shown as a function of the distance from
the inflow boundary. The three components have about the same magnitude during
the whole decay, which indicates that the turbulence indeed remains isotropic. By
fitting a power law to the computational result, we find that the turbulent kinetic
energy decays as x−n with n= 2.51. This value is somewhat higher than the value
given in, for example, George (1992), who mentions n 	 2.1.

From this decay, can estimate the turbulent dissipation ε with the help of the
Taylor hypothesis as:

ε = −dk

dt
= −Uin

dk

dx
. (5.6)

The Kolmogorov length scale η, scaled with the size of the domain is then obtained
from

η

Ly

=

(
v′3

�ε
Re−3

�

)1/4
�

Ly

. (5.7)

The ε and η are both plotted in figure 5. For x > 4, we find η > 0.01. With the help of
the value for η estimated above, we can determine whether our DNS is fully resolved.
The grid spacing in the x-directions is 0.0104 and in the y- and z-directions 0.0078
and these values are of the same order as the estimated Kolmogorov length scale. This
means that our simulation cannot be regarded as fully resolved up to the Kolmogorov
length. Nevertheless, we feel that the resolution is sufficient to describe the relevant
turbulence dynamics in view of the remarks made by Moin & Mahesh (1998).
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Figure 5. The turbulent dissipation ε and the corresponding Kolmogorov length η as a
function of x. The curves are obtained from the expression of the decay of kinetic energy,
determined in figure 4, which leads to ε = 2.75(x + 0.35)−3.51.

Heat release Number of Wave- Flame Figure
parameter τ waves n = Ly/λ number k thickness δ

1.0 2 4π 0.02 7, 8 and 9
3.0 2 4π 0.02 7
5.0 2 4π 0.02 7
3.0 1 2π 0.02 8
3.0 3 6π 0.02 8
3.0 4 8π 0.02 8
1.0 2 4π 0.04 9
1.0 2 4π 0.1 9

Table 2. The different values of the parameters τ , k and δ used to study the growth of the
disturbances by hydrodynamic instability of the flame front. The initial amplitude is always
chosen as A0 = 0.001, except for the case n= 1, where A0 = 0.004 is used.

5.3. Results of type III simulation (flame front instability)

Let us now consider the simulation of the hydrodynamic instability discussed in
§ 2.2. The comparison of this simulation with the theory of § 2.2 is a check whether
compressibility effects are realistically represented by our model and whether these
are correctly incorporated in our numerical code. A series of simulations is carried out
in the two-dimensional geometry, described in § 5.1. The initial value for the flow field
is an undisturbed velocity u0 = (sf l, 0, 0). The flame front is put at x0 = 1.5 and on
this flame front we impose a small wavelike perturbation with a dimensionless wave
length λ and an amplitude A0. This leads to a G-field equal to G = x − x0 + A0 sin(ky)
where k is the wavenumber k =2π/λ. Note that 1/λ= n is the number of waves in the
domain. The initial amplitude is set equal to A0 = 0.001, so that kA0 
 1 and |∇G| ≈ 1.
The position of the flame front is not stabilized, but Uin = sf l is kept constant.

We have varied parameters τ , k and δ in order to study the influence of these
parameters on the growth of the disturbances. In table 2, the parameters used in the
various simulations are given.
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Figure 6. The evolution of the wave-like disturbance on a flat flame front with n= 2 and
A0 = 0.001 at t = 0.05, 0.15, 0.25, 0.35 and 0.45. The unburnt gas is on the left and the burnt
gas on the right.
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Figure 7. The normalized amplitude A/A0 as a function of time for several values of the
expansion ratio or heat release parameter, τ = 1, τ = 3 and 5. In all cases, n= 2, δ = 0.0. The
dashed line gives the theoretical growth rate. —, A/A0 (computed); - - -, A/A0 ∼ exp (Ωt).

In figure 6, the evolution of the flame front is plotted for several times after t = 0 for
the case τ = 3. In the initial stages of the growth, the disturbance keeps its wavelike
form, but at later times the shape starts to deviate from a wave owing to nonlinearity.
The flame front develops sharp spikes, pointing in the direction of the burnt gas. This
shape is similar to the flame-front pattern that we have shown in figure 2 where we
have argued that this results from the flame propagating with respect to the unburnt
gas in the direction normal to the flame front. Therefore, the results shown in figure 6
suggest that the instability will eventually be saturated by the flame front restoration
process.

Between t = 0.05 and t = 0.15, the growth of the amplitude A = (xf,max − xf,min)/2 is
small, but thereafter the growth increases in time and becomes exponential as shown in
figure 7 where we illustrate also the amplitude growth for other values of the expansion
ratio or heat release parameter, i.e. τ =1 and 5. After the velocity field has developed,
figure 7 shows that the agreement between the growth rate found from the simulations
and the theoretical growth rate is excellent. The results also show the expected increase
in growth rate when τ becomes larger. At a later time, the growth rate obtained from
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Figure 8. The normalized amplitude A/A0 as a function of time for n= 1, 2, 3 and 4. For all
cases, τ = 3, δ = 0.02. The dashed line indicates the theoretical growth rate. Key as figure 7.

the simulations levels off and becomes smaller than the theoretical value. This is
because nonlinear effects such as flame front restoration, mentioned above, set in.

Furthermore, we see in figure 6 that for t � 0.25, additional small disturbances
appear on the flame front. These disturbances are probably the result of small discret-
ization or numerical errors. Namely, it follows from (2.8) that the growth increases
with k. Therefore, these errors, which have a large value of k and which are initially
very small, become visible in the final stages of the simulation. However, remember
that in our case the Markstein length is taken equal to zero. When the Markstein
length has a value unequal to zero, these small-scale perturbations can be removed
by the diffusion process discussed in § 3.1.

According to equation (2.8), the growth rate also depends on the wavelength of
the disturbance and it increases for larger values of n or k = 2πn. In figure 8, the
growth of the disturbance amplitude is plotted for several values of the wavenumber.
For n= 1 and n= 2, the results show the expected increase with wavenumber and
the agreement between the theory and the actual growth rate is very good as soon
as the flow field has established itself. However, for shorter wavelengths, i.e. n=3
and n= 4, the computed growth rate deviates from the theory. This is because in the
theory one assumes that the flame is infinitely thin, but in our calculations this is
not the case. The correctness of this explanation becomes clearer in figure 9, where
the normalized amplitude is plotted as a function of time for one value of n and τ ,
but for several values of the flame thickness δ. In all the previous graphs, the default
value of δ = 0.02 has been used. When we use larger values such as δ = 0.04 and 0.1,
figure 9 shows that the growth rate decreases. Apparently, the growth rate is only
close to the theoretical value (2.8), if δ/λ
 1. When either δ increases or λ decreases,
the actual growth rate becomes lower than the theoretical value, as we have also
noticed in figure 8.

Although the growth rate increases with increasing wavenumber, figure 8 shows
that the final amplitude of disturbances with a short wavelength may become smaller
than the final amplitude of longer waves. This might be problematic in numerical
simulations which use periodic boundary conditions. In that case, the largest wave-
length possible is a wavelength equal to the size of the numerical domain. Since a
disturbance with this wavelength may continue to grow, it might start to dominate
the solution, which eventually results in a solution, which is influenced by the size of
the numerical domain.
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the theoretical growth rate. Key as figure 7.
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Figure 10. The turbulent flame speed sf t as a function of the turbulent intensity u′, together
with the expected profile, equation (2.6), with C = 1. + , results of simulation without expansion
or τ = 0; × , results of simulations with expansion. —, sf t /sf l = 1 + Cu.

5.4. Results of type IV simulations (turbulent premixed combustion)

We now consider the DNS results, in which the full interaction between turbulence
and the flame front is taken into account.

Let us first look at the influence of turbulence on the flame front, decoupled from
the effect of volume expansion, i.e. without density fluctuations. To this end we have
performed three simulations without expansion, i.e. τ = 0, and varying turbulence
intensity at the inflow. The resulting turbulent flame speed sf t as a function of the
turbulence intensity u′ is plotted in figure 10 with the + symbols. Here, u′ is defined
as r.m.s. the value of the velocity fluctuations at the mean position of the flame front,
xf , and is given by,

u′ =

√
ui

2 =

√
2
kt

ρ
, (5.8)

where the latter equality is valid only for this particular case for which τ =0.
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Figure 11. An instantaneous picture of the flame front for τ = 3.

Figure 10 shows indeed an increase in flame speed with the level of turbulence as
predicted by Damköhler (1940). The relation (2.6) with C = 1 agrees reasonably well
with data, although for the larger values of u′ the computed turbulent flame speed
seems to fall a little below the linear profile. This latter effect is probably due to the
artificial thickness of the flame δ, because for a strongly wrinkled flame, the increase
of the flame surface is limited by δ and therefore the flame speed decreases.

Next we have carried out a series of simulations to consider the effect of gas
expansion. An example of the instantaneous flame front for the case τ =3 is shown
in figure 11. The flame front is strongly deformed and we expect that this will lead to
a strong increase of the turbulent flame speed.

The results for the simulations with gas expansion, i.e. τ �= 0 are also shown in
figure 10 by the × symbols. The flame speed has clearly increased. If we assume that
this increase results solely from the turbulent distortion of the flame front, the data
must fall along the linear line (2.6) discussed above. We see, however, that this is not
the case. So it appears that sf t also depends directly on the heat release parameter τ .

Let us assume that (2.6) is still a valid approximation for the influence of turbulence
on the flame speed in the range of u′/sf l that are found for the cases τ �= 0. The direct
effect on the flame speed by the gas expansion can then be described by plotting the
constant C defined as C = (sf t − sf l)/u

′ as a function of τ . This is shown in figure 12
where we see that increase of the turbulent flame speed grows when the expansion rate
rate becomes larger. The rate of growth of C seems to level off at the higher expansion
rates. These results are consistent with the results of Wenzel & Peters (2000), who
also observed an additional increase in the turbulent flame speed for higher expansion
rates. Their conclusion, that the effect of gas expansion is important only for low
turbulence intensities could not be validated here, since u′ is low in all our simulations.

The explanation of this dependence of the turbulent flame speed on the gas
expansion must be sought in the effect of the hydrodynamic instability. We have seen
in § 5.3 that disturbances on the flame front will grow, causing an increase in the area
of the flame front and therefore an increase in the turbulent flame speed. The results
of § 5.3 also indicate that the hydrodynamic instability of the flame front becomes
stronger at higher expansion rates in agreement with the behaviour of our data in
figures 10 and 12.
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Figure 13. The probability density of finding the instantaneous flame front at a position x
with respect to the mean position xf for several values of the heat release parameter τ .

5.5. The position of the flame front xf

As can be seen in figure 11, the flame front is strongly deformed. As a result, the x-
position of the instantaneous flame front, xf , depends on the y- and z-coordinate and
the time. In figure 13, we have plotted the probability density of finding the instanta-
neous flame front at a certain position x. At τ = 0, i.e. without expansion, the
distribution is nearly symmetric with respect to xf = xf . When τ �= 0, the distribution
broadens as a function of τ and at the same time becomes positively skewed. This
means that the disturbances on the flame front grow with larger values of τ . This is in
agreement with the fact that the growth rate of hydrodynamic instabilities becomes
larger when τ increases. The positive skewness, i.e. large excursions of the flame front
to the burnt gas side, is in agreement with results of Wirth, Keller & Peters (1993)
and experiments of Plessing et al. (2000); it is due to the flame developing rounded
edges toward the unburnt gas and sharp spikes toward the burnt gas (figure 6).

5.6. Change of turbulence characteristics across the flame front

Let us now consider how the turbulence changes when the flow passes the flame
front. First, we consider the turbulent kinetic energy. In figure 14, the mean turbulent
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kinetic energy per unit volume kt defined according to (3.22) is plotted as a function
of x for several expansion rates. The initial condition for the turbulence intensity at
the inflow is chosen to be the same for all cases. For the case τ = 0, there is no gas
expansion and the development of the turbulence will not be affected in this case, i.e.
the decay of turbulence will be similar to that found in figures 4 for the incompressible
case. For the case τ =1, we see an decrease of the turbulent kinetic energy per unit
volume, when the turbulence passes the flame front. However, for higher expansion
rates, τ =3 and τ = 5, this turns into an increase in the turbulent kinetic energy.

In order to throw more light on this change of behaviour as a function of τ , we
also performed a simulation of turbulence passing a flat flame, which is denoted as
type II in table 1. This means that the gas expands at a fixed flame position and
the shape of the flame front is thus not influenced by the turbulence or instability
processes. For the expansion rate in the case of the flat flame, we take τ = 3. We see in
figure 14 that the kinetic energy strongly decreases when it passes the flat flame front.
The conclusion is that the decrease of the kinetic energy across the flame front must
be connected to the gas expansion and the increase of kinetic energy must be related
to deformation of the flame front which occurs in particular at the higher expansion
rates. We shall return to this when we discuss the kinetic energy budget in § 5.7.
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In figure 15, we have plotted the different components of the turbulent energy for
the case τ = 3. Before the flame front, the three components are almost equal which
implies isotropic conditions. Behind the flame front, the x-component of the turbulent
energy strongly increases while the other contributions continue to decay. As a result,
the turbulence behind the flame front becomes strongly anisotropic and it seems that
there is no tendency to return to isotropy further downstream.

The increase of the turbulent kinetic energy is thus solely due to the growth of
the velocity fluctuations in the x-direction. This points again in the direction of the
hydrodynamic instability as being the cause for this growth because we have seen in
§ 5.3 that the hydrodynamic instability influences primarily the x-component of the
velocity. We shall come back to this issue in the next section when we discuss the
kinetic energy budget.

5.7. Turbulent kinetic energy budget

To investigate the background behind the behaviour of the turbulent kinetic energy
that we observed in the previous section near the flame front, in more detail, we
consider in this section the different terms in the budget for the turbulent kinetic
energy as expressed in (3.27) (see also Rutland & Cant 1994). These terms are plotted
in figure 16 for various values of the expansion parameter τ . The diffusive transport
term Dk has been neglected because this term is small since there are no regions of
high shear in the mean flow field.

In the case of τ = 0, (figure 16a), the main balance is between the transport of
turbulent kinetic energy by the mean flow, Dk/Dt , and viscous dissipation, εk . The
fluctuations in Dk/Dt are due to the statistical error in kt , which is amplified by Dk/Dt

being computed by taking a spatial derivative of kt . The total budget term is not
exactly zero in figure 16. This is caused by the fluctuations in the Dk/Dt-term and by
the stabilization mechanism keeping the flame front at a fixed position causing a slowly
varying mean flow with a long time scale. As a result the statistics converge slowly.

In case of τ = 1 (figure 16b), the Dk/Dt and the εk-term remain important, but con-
tributions of the expansion term Ek and the pressure term Πk become non-negligible.
The Πk has a positive and negative contribution which seems to cancel one another.
The Ek is everywhere negative which we have also observed in relation to (3.27)
for this case where ∂ui/∂xi > 0. Apparently, the expansion term Ek accounts for the
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Figure 16. Kinetic energy budget for several expansion rates. (a) τ = 0; (b) 1; (c) 3; (d) 5.
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decrease of turbulent kinetic energy that we observe in figure 14 which is consistent
with our observation based on the flat-flame results shown in this figure. A decrease
of kinetic energy has also been observed in previous studies, e.g. by Lindstedt &
Sakthitharan (1998). In that case, the decrease of turbulent kinetic energy across a
flame front is attributed to an increased viscosity, which accompanies the temperature
rise, due to combustion. In our case, the viscosity is taken as constant and thus cannot
play a role. Therefore, our results indicate that the decrease of energy observed may
also result from the gas expansion.

At the larger expansion rates τ = 3 and 5 (figure 16c, d), the picture changes. Both
terms Ek and Πk remain important, but the production term Pk grows and becomes
the dominant term. In the region x = 2.0 − 2.2, the terms Ek and Πk are in balance
and the Dk/Dt-term almost coincides with the production term Pk . This explains the
increase in the kinetic energy that we have observed in figure 14 for τ =3 and 5.

To explain the background of this increase in the production Pk we consider the
three terms that contribute to Pk , separately. These are

Pk,1 = −ρu′
iu

′
j

∂ui

∂xj

,

Pk,2 = −ρ ′u′
iu

′
j

∂ui

∂xj

,

Pk,3 = −ρ ′u′
iuj

∂ui

∂xj

.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.9)

For the case τ = 3 we have plotted these contributions to Pk in figure 17. We find
that the dominant contributions are both Pk,1 and Pk,3 with Pk,2 being much weaker.
The Pk,1 is negative, but the Pk,3 is strongly positive and is therefore responsible for
the positive total production Pk .

Given the definition of Pk,3 in (5.9) and the fact that ui = (u1, 0, 0) with u1 > 0 and
that ∂u1/∂x1 is also > 0 as a result of the expansion, we find that a positive value
of Pk,3 can only result from a negative density transport term ρ ′u′

i . In § 2.2, we found
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that such a negative density transport is consistent with the deformation of the flame
front. Therefore we conclude that the increase of kinetic energy that we have observed
at the high expansion rates is the result of the deformation of the flame front related
to the Darrieus–Landau instability dicussed in § 2.2 (see also Boughanem & Trouvé
1998). This deformation occurs mainly in the streamwise direction which suggests
that only the u′

1 is influenced. This is consistent with the results shown in figure 15.
Finally, we consider the pressure contribution Πk to the kinetic energy budget (3.27)

in more detail. This term can be divided in two contributions

Πk,1 = p′ ∂u′
i

∂xi

, Πk,2 = −∂p′u′
i

∂xi

, (5.10)

where Πk,1 is called the pressure dilatation and Πk,2 the pressure transport. These two
contributions to Πk are shown in figure 18 for τ = 3. The Πk seems to be dominated
by the pressure transport term. The pressure-dilation term which behaves with an
opposite phase to the pressure transport term, has a maximum value around x = 2.6,
a value which appears to be somewhat larger than the position where Pk,3 reaches its
maximum. This suggest that this positive contribution of the pressure dilation term
to the kinetic energy budget may depend on a process other than the flame-front
deformation which, as we have seen above, dominates the Pk,3. We shall come back
to this in the next section.

5.8. Enstrophy budget

Another view on the dynamics of the turbulence in the neighbourhood of the flame
front can be obtained by considering the enstrophy. In figure 19, we have plotted
the enstrophy as a function of x for the same cases as shown in figure 14 for the
turbulent kinetic energy. The behaviour of the enstrophy follows closely that of
the kinetic energy. In the case of τ = 0, the enstrophy shows a continuous decay
along the x-axis. In the case of τ =1, enstrophy is destroyed at the flame front and
in the case of τ =3 and τ = 5, enstrophy is generated. Also, the simulation of the flat
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flame shows the same behaviour as for the kinetic energy, i.e. a strong decrease of the
enstrophy at the flame front.

In figure 20, we have plotted the contribution of the different vorticity components
to the enstrophy for τ = 3. This figure shows that the initially isotropic distribution
of the enstrophy over its components becomes anisotropic when it crosses the flame
front, i.e. the z- and y-components are amplified while the x-component decreases
further.

Let us interpret the behaviour of the enstrophy in terms of its budget (3.31). The
terms in this budget are shown in figure 21 as a function of x, for several values of τ .

In the case of τ = 0, there is a balance between production by vortex stretching
Sω and the viscous dissipation of enstrophy εω with a minor contribution by the
mean transport term. The total budget is not zero in any of the graphs of figure 21
because εω is underestimated. Namely, εω is obtained from a spatial derivative of the
vorticity fluctuations, which in their turn are obtained from a spatial derivative of
the velocity field. Because we have used a staggered grid in our computations, certain
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terms can only be obtained when the velocity field is interpolated. This interpolation
is consistent with the discretization scheme used in the equations. Nevertheless, the
interpolation smooths the velocity field and introduces an error which causes the
higher derivatives, such as the enstrophy, to be underestimated.

In the case of τ = 1, the term Eω becomes more important. This term accounts for
the decrease of enstrophy density, owing to the expansion in the velocity field. This is
the same effect as we saw in the energy budget. In the case of the higher expansion
rates, i.e. τ = 3 and τ = 5, this term remains important and grows, but the baroclinic
production term Πω grows even faster, resulting in the production of enstrophy at a
position near the flame front.

By comparing figures 18 and 21, we observe that the maximum of Πω appears
at the position where the pressure dilation term Πk,2 has its maximum. So these
two terms seem to describe the same process, i.e. baroclinic production. However, we
have seen also in the previous section that the pressure dilation term does not have
much influence on the growth of the kinetic energy which is instead dominated by
the production term Pk or rather by the flame-front deformation. Therefore, we must
conclude that the mechanism for the growth of the kinetic energy and the enstrophy
are quite different, despite the fact that their behaviour as a function of x is similar,
as follows from comparing figures 14 and 19.

We have found that main production mechanism of enstrophy appears to be
the baroclinic vorticity production Πω. For a more detailed view of this process, we
show figure 22(a) an instantaneous plot of lines of constant pressure, together with the
position of the flame front. The isobars are nearly straight and do not follow the defor-
mation of the flame front. Because the density gradient is perpendicular to the local
flame front, the pressure and density gradient are clearly not aligned. This results
in baroclinic vorticity production figure 22(b). Depending of the orientation of the
flame, either positive or negative ωy vorticity is produced and both contribute to the
enstrophy. In the case of high expansion rates, this production of vorticity becomes
important and influences the structure of the flow behind the flame front. In figure 23,
we plot the modulus of the vorticity in an instantaneous (x, z)-slice, which also shows
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that the vorticity in the flow behind the flame front has a different structure from the
vorticity in front of the flame front.

The role of baroclinic vorticity production in the interaction between turbulence
and a flame front is consistent with the investigations of Rutland & Ferziger (1991);
Mueller et al. (1998) and Louch & Bray (1998), who studied the interaction between
vortices and a premixed flame. They found that this results in long regions of vorticity
in the streamwise direction, which can also be found in our simulation (figure 23).

5.9. Favre averaging

In § 3.5, we mentioned that Favre averaging is often used in flows with a varying
density. Since all the data required to obtain the Favre-averaged turbulent kinetic
energy (3.34), are available from our DNS data, we can compare the kinetic energy
defined in (3.22) with the Favre-average turbulent kinetic energy. Both are plotted in
figure 24 as a function of x. The graphs in this figure have the same shape, but the
peak of the Favre-averaged energy is about 20% lower, which is consistent with (3.35).
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Another view on Favre averaging may be obtained by considering the budget of

the Favre averaged kinetic energy k̃t defined by (3.34) which reads (Lele 1994)

∂k̃t

∂t
+

∂ũj k̃t

∂xj

= −
∂k̃′′

t u
′′
j

∂xj

− ρ ũ′′
i u

′′
j

∂ũi

∂xj

+ u′′
i

∂p′

∂xi

− u′′
i

∂τ ′
ij

∂xj

− u′′
i

∂p

∂xi

+ u′′
i

∂τij

∂xj

, (5.11)

with

k′′
t = 1

2
ρu′′

i

2
. (5.12)

The first four terms on the right-hand side of this equation are the turbulent transport,
the shear production, the pressure and the viscous terms, respectively. These terms
appear also in the budget of kinetic energy for an incompressible flow. The remaining
two terms, which have no equivalent in the incompressible energy budget, are a result
of the Favre-averaging procedure or in particular of the fact that u′′

i �= 0. Let us
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Figure 22. (a) Lines of constant pressure. (b) Regions of baroclinic vorticity production. The
continuous lines indicate regions of positive ωy production. The dashed lines indicate regions
of negative ωy production. In both plots the thick solid line indicates the position of the flame
front in an instantaneous xz-slice at τ = 3.

consider these two terms in more detail. With help of the definition

ρ ′u′
i = −ρu′′

i , (5.13)

and the momentum equation (3.33), we can write these terms as

−u′′
i

∂p

∂xi

+ u′′
i

∂τij

∂xj

= −ρ ′u′′
i

∂ũi

∂t
− ρ ′u′′

i ũj

∂ũi

∂xj

+ u′′
i

∂ρũ′′
i u

′′
j

∂xj

. (5.14)

This equation shows that, besides a contribution due to a variation of the Reynolds
stress, the last two terms in (5.11) are also responsible for the production term Pk,3

which we have already encountered as part of the production term of the kinetic
energy budget (3.27). We have seen that Pk,3 describes the process of flame-front
deformation, which plays an important role in the dynamics of turbulence near the
flame front. This means that the last two terms on the right-hand side of (5.11)
cannot be neglected as is also mentioned by Bray, Champion & Libby (2000). Unless
a model for these terms is adopted, the use of Favre averaging will not give a realistic
representation of the flame front dynamics for the case studied here.
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Figure 24. - - -, The Favre-averaged turbulent kinetic energy, compared to —, the normal
averaged turbulent kinetic energy. τ = 3.

6. Conclusions
We have carried out a direct numerical simulation of a premixed flame in decaying

homogeneous turbulence. The simulation includes the effects of gas expansion in a flow
at low Mach number. The flame front is modelled by a level set approach. In this way,
it is possible to perform an efficient simulation, which includes the most important
phenomena of premixed turbulent combustion. It is possible to stabilize the mean
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position of the flame front by adjusting the inflow velocity into our computational
domain. This allow us to obtain converged statistics by means of time averaging.

The DNS is able to reproduce hydrodynamic instability of the flame front. The
dependency of the growth rate on the expansion rate and on the wavelength of the
initial wavelike perturbation is in good agreement with the theory. When the thickness
of the flame front increases, the growth rates become lower than the theory because
the theory is only valid for infinitely thin flames.

The turbulent flame speed increases with increasing turbulence intensities at the
position of the flame front. This is due to the deformation of the flame front by the
turbulence with a result that its area increases, leading to a larger combustion rate.
The rise in flame speed agrees with theoretical and experimental results. Apart from
the direct effect of turbulent deformation of the flame front, the increase is found to
depend also on the heat release. For higher expansion rates, the increase of the flame
speed grows. This effect is due to the hydrodynamic instability mechanism, which
results in an amplification of the disturbances that are induced on the flame front by
the turbulence.

When passing the flame front, the turbulent kinetic is distributed over a larger
volume as a result of the gas expansion, which accompanies the heat release. This
means that turbulent kinetic energy decreases. At the higher expansion rates, however,
we find that turbulent kinetic energy can also be produced. The production process is
related to flame-front deformation, which as a result of the hydrodynamic instability
amplifies and produces large velocity fluctuations in the streamwise direction. As a
result, the total turbulent kinetic energy increases (despite the decay due to the gas
expansion). Because the production affects mainly one flow direction, the turbulence
exhibits an anisotropic structure after the flame front. We note, however, that the
imposed turbulence at the flame front in our case is rather small, which perhaps allows
the instability process to dominate. This might be different at higher turbulence levels
as argued by Boughanem & Trouvé (1998).

Vorticy at the flame front decreases as a result of the same process that we have
observed for the kinetic energy, i.e. the distribution over a larger volume owing to the
gas expansion. Vorticity, however, is also generated at the flame front by baroclinic
production, which is due to the non-alignment of pressure and density gradients. For
high expansion rates, this production will become stronger than the suppression by
the gas expansion and this causes the vorticity to increase over the flame front for
larger expansion rates. Furthermore, we find that the vorticity after the flame front
has an elongated anisotropic structure.

Turbulence in compressible flows at low Mach number or alternatively non-
constant-density flows is frequently treated in terms of so-called Favre averaging.
Because density fluctuations play an important role in the production of turbulent
kinetic energy at the position of the flame front, standard Favre averaging where
additional terms in the kinetic energy budget are neglected, fails. To model properly
the dynamics of the flame front and the interaction between the flame front and the
turbulent flow, these additional terms in the Favre-averaged kinetic energy budget
must be modelled.
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